LAUNCH YOURSELF INTO

SPACE

MISSION CONFIGURATION

MISSION OBJECTIVE

- Deliver approximately 3 kg of payload to solar escape velocity
- Optimization Criteria
 - Maximize corporate sponsorship opportunities
 - \$20 million or less
 - High likelihood of mission success/insurability
 - Launched before the end of 2003

MISSION PLAN

Team Encounter spacecraft attached to the ARIANE V
ASAP ring

- Spacecraft launch as secondary payload on Ariane 5 (ASAP ring)
- Spacecraft has two parts:
 - Carrier
 - Gets sail to release point
 - Transmits video of sail to earth
 - Sailcraft
 - Carries 3 kg payload to solar escape

MISSION PHASES

Launch

GTO/checkout

- System test
- Rehearse internet video streaming
- Spin up, fire solid motor at perigee to escape Earth's gravity

MISSION PHASES

Sail Deployment

- Inflate booms, let rigidize
- Orient sail for release
- Release sail, transmit images

MISSION PHASES

Solar sailing

 First 300 days, "jibbing" away from the sun

ESCAPE ANALYSIS

Velocity after engine burn 29.8 km/s, approximately 4 times the speed of shuttle

SPACECRAFT LAYOUT

- Built around "Bitsy-SX" spacecraft kernel
 - No onboard autonomy
 - Command and data handling
 - Power supply and regulation
- Overall dimensions:

70 cm x 58 cm (2.3 ft. x 1.9 ft)

Additional hardware

- Propulsion
- Attitude Control and Determination
- Communications
- Imaging cameras
- ASAP 5 allowed dimensions:

60 cm x 60 cm x 71 cm (above separation plane)

1. Stowed Solar Sail; 2. Side Solar Panels; 3. Thruster; 4. Cold Gas Tanks; 5. Imaging Cameras (10X); 6. BITSY™ -SX; 7. STAR 12G Solid Motor

SAIL CONFIGURATION

Boom spreaders & sunshade

Sail material:

– mylar: 0.9 mm (~0.000035 in.)

- Front: aluminum metalization

Back: chromium metalization

Overall sail dimensions:

76.4 m x 76.4 m (250 ft. x 250 ft.)

Life expectancy: exceed 10 yrs.

Mainsail

Sailcraft Active Yaw Stabilization

- Yaw cannot be passively stabilized
- Active stabilization is required
- Yaw sensor measures orientation relative to fixed star field
- Rotation of yaw tabs produces torque similar to a pinwheel

Zero actuator angle:

Yaw tabs produce zero moment

Positive actuator angle:

Solar pressure on tabs creates A "pinwheel" moment

Sailcraft Passive Roll/Pitch Stabilization

- Pitch and roll can be passively stabilized
- Passive stabilization requires no power
- Pitch and roll tabs produce restoring moments
- Similar to the function of a vertical tail on an airplane

Zero Pitch: Tab moments balance

Positive Pitch:
Solar pressure
on tabs creates
a restoring moment

SPACECRAFT PACKAGING

Packaging Specifications

- 60 cm X 60 cm X 15 cm for sail & booms
- Spreader Bars
 - Four 5 cm X 5 cm X 30 cm "table legs"
- Telescopic boom limited by base diameter
- Boom annular packing factor = 1.2
 - Derived from previous telescopic tests (non-isogrid)
- Boom aligned on diagonals of 60 cm X 60 cm pack square
- Sail packaging factor = 5 based on IAE

MAINSAIL DEPLOYMENT

- Sail segments are double z-folded
- Last direction folded is the first direction (first boom axis to deploy
- Boom deployment controls sail deployment
- Base segments deploy first, which is preferable

SPACECRAFT SPECIFICATIONS

- Mass:
 - Sailcraft: 19.0 kg (41.9lbs)
 - Carrier 84.9 kg (187.2 lbs)
 - Total: 103.9 kg (229 lbs)
- Power (Max):
 - Sailcraft: 24 watts
 - Carrier: 93.2 watts
 - Total: 117.2 watts
- Overall spacecraft dimensions: 70 x 58 cm (2.3 ft. x 1.9 ft)
- Overall sail dimensions: 76.4 x 76.4 m (250 x 250 ft.)
- Sail Area: 70 m x 70 m (230 x 230 ft.)
- Boom Length: 54 m (177 ft.)
- Sail material: mylar: 0.9 μm (~0.000035 in.)
- Power source: solar cells

- Communications link: S-Band (located on carrier)
- Velocities:
 - At perigee in GTO: 9.9 km/s (6.2 miles/s) prior to motor burn
 - Earth Escape Velocity:10.7 km/s (6.7 miles/s)

SAIL LOGOS

Primary Advertising Space

4 Major Logo Zones
4 x 10 m Area
50% Paint Coverage
Center is 10 m from sail center
Effective Performance Cost ~ 300 g
Areal Cost ~ 1%
Mass Cost ~ 160 grams
Must be balanced across sail center

Secondary Advertising Space

12 minor logo zones
20 x 20 cm Area
100% Paint Coverage
Around sail solar arrays
Effective performance cost ~ 5 g

ON BOARD CAMERAS

Bandwidth

- Good 183 kbps (1/10 sec)
- Better 313 kbps (1/6 sec)
- Best 1000 kbps (1/2 sec)

- Image Size and Quality
- Amount of Data Returned

9 Ranges of Cameras

- COTS PhotoBit Camera & Nikon Lenses
- Fisheye lens for close viewing prior to deployment
- Eight additional cameras with field of view from 2 to 33 degrees

CAMERA VIEWS SIMULATION

Fish Eye Lens View

25 m range 2.7 min

50 m range 3.8 min

100 m range 5.3 min

200 m range 7.6 min

400 m range 10.8 min

16mm Lens

25m range 2.7 min

100m range 5.3 min

400m range 10.8 min

1600m range 21.7 min

3200m range 30.8 min

PRELIMINARY BUDGET ESTIMATE

Sailcraft Segment Estimate: \$5.9-\$8.0 M

Spacecraft and Ops. Estimate: \$7.3-\$9.0 M

Arianespace launch estimate: \$3 M

Total Mission estimate: \$16.2-20 M

SCHEDULE MILESTONES

Preliminary Design Review: Jan. 2002

Critical Design Review: Oct. 2002

Environmental Testing: Aug. 2003

Launch: Dec. 2003

Program Cost Assessment: SAA

- Top-down cost estimate prepared from RAND smallsat cost model
- based on 48 missions, 80-500kg.

Spacecraft Cost-Risk

^[1] Technology Readiness Level (TRL) is a measure of the readiness of a technology for flight, based on a ten scale

Go!

• If revenue projections hold, SAA recommends Encounter proceed with the mission:

- It's feasible
- It's exciting
- It's inspiring
- Likely that revenue could be generated through "public participation" in the progress of the mission (Discovery Channel, NOVA, webcasts, etc.)